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1. INTRODUCTION

Rampel (Ref. 1) introduced the influence function as a tool for assessing
robust estimators. In a multivariate population, an Influence function can '

usually be defined for estimators of parameters. This influence function can 2
be used to determine where in the n-dimensional space of observations the

observed vector would have a large effect on the value of the estimator of the

parameter.

For many parameters, the analytic form of the influence function can be

derived (e.g., the mean, the variance, the bivariate correlation coefficient,

and the multiple correlation coefficient). In other cases, it is difficult to

obtain a closed-form expression for the influence function. In such cases, an

empiric estimate may be useful.

Many agencies of the Federal government maintain large data bases and

publish reports containing statistical information (e.g., the Bureau of the

Census, the former Department of Energy, and the National Bureau of Stan-

dards). These agencies use outlier detection and data editing methods as

quality control measures for their data bases., Also, the Department of Energy

has had an extensive program for reviewing several of its data bases. In this

data validation program, some new approaches for detecting outliers were

introduced including the use of influence functions. (Chernick [Ref. 21)

At some of these agencies (particularly the Bureau of the Census) such

research has been conducted on the replacement of observations (commonly

called imputation). These techniques often rely on other related data to

obtain a reasonable estimate as a replacement for the "bad" value. Also, in

some cases, the method is designed so as to avoid inducing a large bias on the

estimate of a particular parameter. Unfortunately, many of these data bases

serve several purposes and a favorable procedure for one estimate may

adversely affect estimates of other parameters which are Important to dif-

ferent users of the data base. Consequently, influence functions can play

an important role in the maintenance and validation of large data bases.
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To give a formal definition, we point out that the influence function

depends on the distribution function F of a random observation vector, the

parameter of interest, which is commonly written T(F), and the observation

*i vector. The parameter is considered as a functional T(F) of the distribution

- function F. The influence function is defined by the following equation

whenever the limit on the right hand side exists:

T((l- ) F + E 6x) - T(F)

I(F, T(F), x) - is

where £ Is a positive real number, x is a point of interest in the observation

space, and 6 x is the distribution function with all its probability mass con-

centrated at x.

The influence function is approximately equal in large samples to n times

the difference between the estimator with an observation at x included and the

estimator with the observation at x excluded where n is the sample size. This

*can be seen by replacing F with Fn-i (the empiric distribution function for a

*sample of size n-1) and approximating the limit as e tends to 0 by

replacing e with ,

n-1 x
because -+ -Z - F , we get that the influence function isn n-i n n

approximately n(T(Fn ) - T(Fn I)) as claimed.

Given a sample of observations, the influence function for a parameter of

*' interest may be estimated for each observation. An observation which has a

* very large estimated influence will deserve particular attention, and we may

be better off to discount it in our estimation procedure. If it is necessary

for such an observation to be replaced, we may choose a value with small or

zero influence on our estimator. The next section contains some commn

examples of this concept.

:q

What constitutes a large estimated influence depends on what assumptions are
made about the underlying distribution.
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In orbit determination problems, least-squares fittings methods are used

to estimate orbit parameters based on data such as pseudo-range, delta range,

and azimuth and elevation angle measurements. It is well known that the

least-squares procedure leads to parameter estimates that can be very sensi-

tive to outlying observations. Consequently, robust filtering or outlier

rejection techniques sometimes need to be used to obtain good estimates of

orbital elements on the basis of such data. The methodology proposed in this

report can be used to arrive at more sophisticated outlier rejection and

replacement techniques for the processing of these data.

The literature on influence functions is growing rapidly with new appli-

cations to estimation, hypothesis testing, and outlier detection appearing

regularly. Chernick (Ref. 2) mentions an application to the validation of

energy data and computes an influence function for multiple correlation in a

special case. Chernick, Downing and Pike (Ref. 3) introduce an influence

function matrix for the autocorrelation function which can be applied to

detect outliers in time series. Reid (Ref. 4) determines an influence

function for the Kaplan-Meler estimator of a survival curve and uses it to

obtain the asymptotic variance of that estimator. Their use for hypothesis

testing is proposed by Lambert (Ref. 5). Devlin, Gnanadesikan, and Kettenring

(Ref. 6) illustrate the potential use of the influence function for detecting

outlying multivariate observations.
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2. XAMPLES

2.1 TME MEAN OF A DISTRIBUTION

For a univariate distribution function F, the man can be written as

T(F) f- ydF and the sample mean as X T(Fm)
-m i-l"i

where me assume IT(F)J <" and IX} are the a Independent observations

and F. is the empiric distribution function on the basis of these

observations. In this case

-C)_J yd + ex _J ydF
(P, T(F), x) - li,

e.0 (1)

-x- f ydF-T()-x--

-mh

Replacing v by , me obtain a sample estimate for I

This estimate of I Is unbiased and consistent. Large values of I correspond

to observations which are say 2 or 3 standard deviations away from the man.

So the influence function for the mean is equivalent to a 3 sigma outlier

rejection rule. If the observations have a normal distribution, the proba-

bility of the influence function estimate exceeding 3 standard deviations is

loe than 0.01.

2.2 TRE VARIANCE OF DISTRIBUTION

The variance, a2 . of a univariate distribution function F can be written

T(P) - (y-.) 2 dF and the sample variance a -- (X 1-)
2 -T().a "1 ~ 1 )



Agein, this Is meaningful only if we assume T(F) < . The influence function

is given by I(FT(F),x) - (x-V) 2  T(F) - (x-)2 - .  (2)

A sample estimate could be

£~ _ 2
I (X-) -. 2

2
This estimate is consistent but has bias a /m. Note that large positive values

-- of I again correspond to Xs which are 3 or more standard deviations away from

the mean. However, interestingly, the largest negative influence occurs at

203 THE BIVARIATE COEFFICIENT OF CORRELATION FOR A BIVARIATE

DISTRIBUTION FUNCTION

Here x - (xI, x2) Is a two-dimensional vector,

T::)--1" -J*lx x2 dF - -J x1 dF1 -J x2 dFT(F) W 2J - )2) "~ 2 )2)" dF ( I d 2 I L-J 2 2 - J 2 d2

where F is the bivariate distribution defined by

V(x3 X2 ) - P[X 1 I X 2 C x2 ]

and FI(xz) I F(xl,1), 72(x2) - F(in, x2)0

In this case, the influence function is
S2 2

*f *2 Y2
I(I, T(T), 10 (3)Y p':~17 P 3

,:i Xl- PlU2 U2

where Yl and y2 m - 2- , 1 is the mean of 71,1 02
2 is the variance of F1 U2 is the mean of F20 Is the variance

8



of F2 , and p - T(F). An estimate I can be obtained by replacing p, 01, u2,

01, and a, with some estimates in Eq. (3). For a derivation of Eq. (3) see

Chernick (Ref. 2). Gnanadeslkan (Ref. 7) points out that for bivariate normal

data$ the estimated influence function for the Z transformation of the corre-

lation coefficient has approximately a product standard normal distribution.

This distribution can be used to determine significantly large values for I.

2.4 SLOPE AND INTERCEPT PARAMETERS IN A SIMPLE LINEAR REGRESSION

Here we assume

E(YIX-x) - + x (4)

and let 11y - E(y), U - E(x), d2 - Var Y and ax a Var X. X and Y have a

bivariate distribution function with finite second moments

Coy (X, )
Let (I"). We have from Eq. (4)

0 - P (5)

and

a- 1y- 0 X . (6)

Therefore

a TO', q.,y)I(F, a.x

I(7.s.(.y)) - .. ,,I( ,p(xy)) + C - y F2" 'x)
K x ,

2 2a IMP. a ,y) I(r. ax , )

lie. a I(FDPV(Z ) + -- (7)lffx y 22



I n n n, _ n ., . . , _. . . -, / ., .-: . .-. . . . -" . i ' . . . .. - - " . . . . .' .- .

and from Eqs. (2) and (3)

((x ((zx) (_P!) {(z~ )2 +(y )~

a 3x

From Eq. (6) we get

- (y - - - ) - U I(w,5,(xy)) (9)

Tram Eqs. (I) and (9) is see that these influence functions can be

estimated by obtaining sample estimates of vi ,O ,o_, and p. For theyx y
regression parameters u see that the influence function depends on the same

parameters as for the correlation coefficient.

Techniques for determining Influential observations and leverage points

In regression problem are given In Delsley, Kuh, and Welsch (1sf. 8).

* Because the classical approach to orbit determination involves a linearization

which leads to solving a large regression problem (i.e., estimating six or

more parameters) the techniques given by lelsley, Kuh, and Welsch could be

useful. Also, an influence function for the regression parameters could be

* calculated similarly to the calculation illustrated here for the simple linear

regression.

In each of the four examples given in this section, the estimator I will

be consistent for I if consistent estimates of the unknown parameters are

used. Also, if the maximm likelihood estimates are used for the unknown

parameters the estimator I will be a saxismn likelihood estimator of I.

10



3. OUTLIER DETECTION AND REPLACEMENT OF MISSING OBSERVATIONS

In Gnanadesikan (Ref. 7), it is shown how contours of constant influence

based on Eq. (3) can be used as a graphical tool for detecting outliers with

respect to bivariate correlation. Chernick, Downing, and Pike (Ref. 3) use

influence function estimates for the autocorrelation function of a time series

to determine outliers.

Here we propose the use of the influence function to determine observa-

tion values for replacing outliers or for replacing missing observations.

Observations with unduly high influence should be replaced by values which

have little or no influence on the estimated parameter or parameters. The

philosophy is that if an observation needs to be replaced and no additional

information is available about what the correct value should be, then one

should choose a value that does not influence estimates of importance to the

users of the data. All this assumes that there is a need to replace the

outlier or to fill in a missing observation.

We shall now illustrate this approach for the case when the estimate of

interest is the population variance (i.e., example Eq. (2)).

Here we assume that we have a sample of size n and we are concerned that

we might have one or two outliers. By rearranging the numbering of the

observations, if one outlier is detected, we assume for notational convenience

that it is the nth observation.

Suppose in the case of one outlier that we observed a value

X n X- + 3 5 The influence function estimate for both the mean and

the variance at X will be large indicating that the observation is an

outlier, we shall replace Xn with

Let 1 n-i 1 A

n + X Xn (10)
n ..



- t

o-'= n-i

2 12

.:_ - - %-J,

r ( n- 2

2 1 n-1 -2 1 A 2 (I

Sn.i ° a X x) -1)
n-I n n

where Xn is our choice for a replacement to Xn . From Eqs. (10) and (11)

we get
_x -

- - n ni(12)

and
_2

n-n - _1) 2.  (13)

n n- n n-i er

2 2

we cannot quite do this. If we choose X - Xni1 then Xn - X n-1 However,

choosingX -X tends to make S2 < S  In fact, from Eq. (13) we see
_2n n-i n ni

that S 2 2 . On the other hand, Eq. (2) tells us that

I(F,T(F),x) -0 if (x - d.2 or x a a o. Consequently, one would

suspect that the choice X n %-I + Sn-1 or -XnX - Sn-1 would have a

2
smaller influence on the estimate of a • This suspicion is borne out by the

12
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S 2

fact that for either choice S2 S2 -j The price paid for reducing1 1 1 - -- .Thprc padfrrdin
n

the influence on the variance is an influence on the mean. When

+~ .S Sn-I andwhen
n n-i n-i' n -n-i n

A - n-SnI
X n " n-I - s -I' -x x- - .-" A slight modification of this

replacement for Xn leads to a zero change in the estimate of 2 If we solve

2 2 nthe equation S n S n-I for Xl, we find X ! n In-I * Sn I  In the

case N - S we have X - and when
n In-I n11 n-i I n-i I and whe

Xnm niv Sni W hae 1  'X~i n We shall nov consider

the case of two outliers.

Theorem 1

In the case of two outliers, say Xn I and X., we can choose

XV1 a iX n-2 +S 2

and

- X -S 2

where

n-2

I
n2n-2 X,

,nd S 2  - i n-2 - 2
and Sn-2 n- ii (Xi -n-2)

In this case we have X -a - 0nd S2 -2 0.
n n-2 n n-2

13



n-2A A

..- L +(Xn + n)In

(n-2) 1

- n n + n + in-.)/.
pr o eo X n mae (X=

Our choic of Xn - X-I makes ( n + i)/n- 2a 2/n. Consequently,

X -- (14)
n UX2 0

From sq. (14), is see that

i-2

2 2 S2+ (n 1 _22/ .Xn2 +z  +X- n-2

+ (Xe-i 2 -- 2 n- (15)

S2
- sn_2 .

A A

We note that as long s w choose Xn  2_ -X 1  q. (14) will be

satisfied. But in order to also obtain Eq. (15), we mst have

Xn-1 = n-2* Sn-2 " We are fortunate that in this situation, because of
symmetry, we can find replacement values which leave both the man and

variance estimates unchanged.

In the case of one outlier, me cannot do this. If estimating the man is

Important, and we do not care about the estimate of variance, one should

choose X - Xn I . On the other hand, if the estimate of variance is mch
n n

more Important, one should useX n - I n1+ SU on - I -1 with

the choice mong these two estimates dictated by whether Xu was larger,. han

V-1 or not (in the case when the outlying observation X, is known). If both

parameters are important in the estimation, a compromise choice for Zn should

be chosen perhaps by InImising a weighted average of the absolute value (or

square) of the estimated Influence functions.
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The approach of minimizing a weighted average of the absolute value (or

square) of the influence function can be generalized to the case of several

parameters. Observations will be declared outliers if they have an unduly

large influence on any of the important parameters and they will be replaced

by values that minimize their average absolute or average square influence.

The methodology described here for the variance could also be applied in

the case of the correlation coefficient or the regression parameters or for

combinations of these parameters.

15



4. AN EXAMPLE OF POWER PLANT DATA

The Department of Energy collects monthly data on fuel consumption and

electricity generation for all utilities and some industrial plants. For two

particular plants, three years of monthly data were analyzed and outliers were

found using the influence function for bivarlate correlation (Chernick [Ref. 21).

Subsequently, this data was used to illustrate a new time series technique for

detecting outliers based on influence functions (Chernick, et al. [Ref. 3]).

Table I presents the 36 values of the consumption data for one of the plants.

This table also includes values for the influence function estimates for the

* mean and variance of the sample at each observation point. Notice that obser-

*vation no. 23 has the largest influence on both the mean and variance. In

computing the influence function for the correlation between consumption and

* generation, observation no. 23 also stood out. Note that for the variance,

the observations closest to the sample mean have the largest negative influ-

ence although these observations have the smallest influence on the mean.

* Assuming that one wanted to impute a value to observation no. 23, we

would choose the value 9.3 if we wanted to leave the mean unchanged. If we

wanted to leave the variance unchanged, we use either 9.3 + 0.38 - 9.68 or

9.3 - 0.38 - 8.92. Because the consumption and generation data are highly

correlated and the generation data was not suspect in this case, an estimate

for the consumption data on the basis of regression or on the influence func-

tion for bivariate correlation would be more appropriate in this application.

17
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Table 1. Influence Function Estimates for Power Plant Data

Observation Influence Functions
Number Consumption Mean Variance

1 71 59.4 3167.3
2 4 -7.6 -303.3
3 3 -8.6 -287.1
4 5 -6.6 -317.5
5 4 -7.6 -303.3
6 3 -8.6 -287.1
7 48 36.4 963.9
8 11 -0.6 -360.7
9 11 -0.6 -360.7
10 5 -6.6 -317.5
11 .4 -7.6 -303.3
12 16 4.4 -341.7
13 3 -8.6 -287.1
14 4 -7.6 -303.3
15 6 -5.6 -329.7
16 15 3.4 -349.5
17 5 -6.6 -317.5
18 3 -8.6 -287.1
19 4 -7.6 -303.3
20 13 1.4 -359.1
21 6 -5.6 -329.7
22 5 -6.6 -317.5

*23 93 81.4 6264.*9
24 4 -7.6 -303.3
25 8 -3.6 -348.1
26 4 -7.6 -303.3
27 5 -6.6 -317.5
28 5 -6.6 -317.5
29 4 -7.6 -303.3
30 6 -5.6 -329.7
31 19 7.5 -306.3

*32 4 -7.6 -303.3
33 3 -8.6 -287.1
34 3 -8.6 -287.1
35 5 -6.6 -317.5
36 4 -7.6 -303.3

18
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